Japanese Students' Pitch Patterns in Relation to English Sentence Stresses

Rieko Nagamasa

English sentence stresses are characterized by higher pitch. In this study the pitch patterns of Japanese students were analyzed in comparison with those of native speakers of English in relation to sentence stresses. The Japanese speakers' tendencies were 1) not to raise their pitch at all or significantly in predicate verbs, adjectives, or intensifiers with a sentence stress and 2) to make the pitch in subject pronouns as high as or higher than that in predicate verbs, adjectives, or intensifiers.

Key Words: [sentence stresses] [pitch rise in verbs] [higher pitch in subject pronouns] [pitch contours] [acoustic analysis software]

(Received September 11, 2017)

1. Introduction

This study investigates characteristics of Japanese students' pitch use in relation to sentence stresses. Their pitch patterns in English sentences will be physically captured by means of acoustic analysis software and will be compared with those of native speakers of English. The study focuses on observation and description of their pitch use in the subject pronoun (canonically unstressed) and the predicate verb, adjective, or intensifier (canonically stressed) in a sentence. It will become the first stepping-stone to an ultimate goal of creating e-learning exercises that visualize pitch contours and enhancing students' acquisition of English sentence stresses and intonation.

In principle English sentence stresses are placed on content words, i.e. nouns, verbs (except for 'be' and 'have'), adjectives, adverbs and wh-words. In contrast function words (ex. pronouns, prepositions, articles, conjunctions, and auxiliaries) are usually not stressed in a sentence unless they have some semantic emphasis. Sentences stresses are easily associated with larger volume but are actually a combination of higher intensity, higher pitch, longer time, and more clarity in vowels. Bolinger (1958 cited in Sugito 2012) and Liberman (1967)

^{*} Kagoshima Immaculate Heart College, English Department, 4-22-1 Toso, Kagoshima-shi 890-8525, Japan

cited in Sugito 2012) claim that producing higher pitch, in particular, is crucial to successful perception of English stresses by the listeners.

Hearing my students' English pronunciation in class, I often notice that a good number of them do not pay much attention to raising pitch in syllables with sentence stresses and to lowering it in unstressed syllables. It is important for them to acquire basic pitch patterns necessary for marking English sentence stresses so that they will be better understood. By using higher pitch in a word without a sentence stress they might be misunderstood because it indicates a special semantic emphasis on that particular word. For example, if they use higher pitch in a subject pronoun such as "I" and "you", it means "I don't know about the other people, but as for me/you...". They happen to convey such a special meaning to the listeners even when their intention is otherwise.

The Course of Study for Lower Secondary Schools issued in 2008 and partly revised in 2015 by Ministry of Education, Culture, Sports, Science and Technology, Japan, states that instructions should be given in order for students to "become familiar with the basic characteristics of English sounds such as stress, intonation and pauses and pronounce English sounds correctly" (Section 9: MEXT 2011 and 2015). I strongly feel the need to develop awareness-raising exercises for my students, particularly those who aim to be junior high school English teachers, to check their pronunciation visually and to acquire correct pitch patterns for English sentence stresses and intonation.

2. Previous Research

Sugito (1983) compared the pitch contours of 12 non-native speakers of English with those of 6 native speakers in the sentences "Everyman carries two bags about with him. One in front, one behind, and both are full of faults." According to this experiment, most of the Japanese speakers (the non-native speakers of English) raised their pitch in the pronoun "one", a function word not to be stressed, both times, whereas the native speakers did not. The non-native group was less likely to raise pitch in "front", the content word that all the native speakers stressed with higher pitch (Sugito 1983). Mori (2005) and Maeda and Imanaka (1999) report Japanese speakers' tendency to use higher pitch in subject pronouns than in verbs which native speakers of English would stress.

Research has also been conducted on the effectiveness of e-learning exercises on English stresses and intonation by the use of acoustic analysis software such as *Praat*. Le and Brook (2011) found that the visual feedback such as pitch contours displayed by *Praat* was beneficial for Japanese learners to improve their intonation. Wilson (2008) recommends an eclectic use of *Praat* and Moodle for enhancing Japanese students' autonomous learning of English pronunciation including stresses and intonation.

3. Experiment

3.1 Purpose

I will compare Japanese students' pitch change between a subject pronoun and a predicate verb, adjective or intensifier with those of native speakers. In principle the verb, adjective, or intensifier in the predicate gets a sentence stress while the subject pronoun does not unless it has a special semantic emphasis on it. Therefore, native speakers of English are likely to raise the pitch of their voice in the predicate verb, adjective, or intensifier but not in the pronoun. This study will observe to what extent Japanese learners of English will follow this pitch pattern based on sentence stresses.

3.2 Method

6 native speakers of English and 12 Japanese students who are non-native speakers of English read two sets of English texts. Their speech was recorded by the use of WaveSurfer© 1.8.8p5 (2000-2017), the acoustic analysis software developed by Jonas Beskow and Kare Sjolander.

3.3 Subjects

The six native speakers who participated in the recording are as follows:

- 1 female American in her late-twenties
- 1 male Australian in his early-thirties
- 1 female Canadian in her mid-thirties
- 1 female South African in her mid-thirties
- 1 Englishman in his early-fifties
- 1 Scotsman in his early-fifties

All are teachers of English with 3-28 years of experience.

The twelve non-native speakers who participated in the recording are Japanese college students who are 18-19 years of age. All of them learned English at high schools in Kagoshima, Japan, for about 6 years. Two of them took weekly private English conversation lessons taught by native speakers for a year and one for 7 years. Two students stayed in Canada for a month on a study-abroad program. All the twelve students had not learned about sentence stresses in my phonetics class when the recording for this study took place.

3.4 Text

The two sets of text that the speakers read are as follows:

Text 1

A: What's the matter?

B: I lost my glasses.

A: Where'd you put them?

B: If I knew, I could find them.

(Judy B. Gilbert. 1993. *Clear Speech Student's Book: Basic Pronunciation and Listening Comprehension in North American English.* Cambridge: Cambridge University Press) *There was no underline in this text when the subjects read it.

Text 2

Dear Lisa.

Hi! I have been very busy since we moved here. Kagoshima is a good place to live. It is nicer than I thought. There are a lot of sightseeing spots, and I like Sakurajima the best. Have you ever seen a volcano? Sakurajima has three active volcanoes, Kita-dake, Naka-dake, and Minami-dake. I know you have never been to this city. So, if you come here, I will be happy to show you around.

Goodbye now,

Taro

(Masao Niisato et al. 2016. SUNSHINE ENGLISH COURSE 3. Tokyo: Kairyudo.)

The speakers read all the sentences in both sets. In this study I will focus on the following four clauses (underlined parts in the above text) for pitch analysis:

Target 1: "If I knew"

Target 2: "than I thought"

Target 3: "I have been very busy"

Target 4: "I will be happy"

Each clause has the first person pronoun "I" as its subject. Targets 1 and 2 share the same sentence structure: a conjunction + a subject pronoun + a predicate verb. Target 1 appears in the initial position of a complex sentence, whereas Target 2 is in the sentence-final position. Targets 3 and 4 have the structure of "a subject pronoun + an auxiliary + a be-verb (+ an intensifier) + an adjective". Target 3 is in the sentence-initial position of a complex sentence, whereas Target 4 is in the latter half of a complex sentence.

^{*}There were no underlines in this text when the subjects read it.

3.5 Data Processing

The recorded voice of each speaker reading each text is displayed as pitch contours along with waveforms and spectrograms by the acoustic analyzer WaveSurfer© 1.8.8p5.

First the mean frequency is taken of each speaker's voice in the complex sentence that includes a target clause. Next the fundamental frequency of the vowel (the one with a potential word stress) in each word of the target clause is measured based on the pitch contours. Its ratio to the mean is calculated for more objective comparison among speakers with different basic tones (for example, women usually speak with higher tones than men do). The degree of pitch change is indicated by the difference in the ratio between the two words adjacent to each other. As for Targets 3 and 4 the difference in pitch ratio is also calculated between the subject pronoun and the adjective or its intensifier (i.e. "very" in Target 3 and "happy" in Target 4).

All the ratios (the ratios to the mean frequencies and the differences in ratio between words) are shown to the second decimal place in Tables 1-8 in the format of Microsoft[©] Excel[©] for Mac 2011 (ex. In Table 1 the NS1's ratio to the mean frequency in "I" is indicated as 1.05 rather than 1.045, and its difference from the ratio in "If" as -0.14 rather than -0.135).

4. Results and Analyses

4.1 The Pitch Patterns in the Clauses with the Structure of "a conjunction + a subject pronoun + a verb"

4.1.1 The Pitch Patterns in a Sentence-initial Clause with a Verb (Target 1)

In the first target clause, "If I knew", a sentence stress is usually placed on the verb "knew". On the other hand, the conjunction "If" and the pronoun "I" are not stressed as they are function words without any semantic emphasis. Therefore, it is expected that the pitch will be sustained relatively low in "If" and "I" and will acutely rise in the verb "knew".

The results of the native speakers' pitch use in Target 1 are shown in Table 1. All of them raised the pitch of their voice in the verb "knew" by 0.34 in ratio on average. With this pitch rise a sentence stress was clearly placed on the verb by every native speaker. An example of their pitch contours is shown in Figure 1.

The results of the Japanese students' pitch use in Target 1 are shown in Table 2. On average, they raised the pitch of their voice in the subject pronoun "I" by 0.13 in ratio but lowered it in the verb "knew" by 0.16 (Table 2). A pitch rise that should mark a sentence stress in the verb was not successfully realized by any of the Japanese students.

The pitch contour of a native speaker (NS1) shown in Figure 1 is characterized by an acute rise in the vowel [u:] of the verb "knew" (0.53 increase in ratio) (Table 1). In contrast that of a Japanese student (JS11) in Figure 2 does not indicate any significant pitch rise in

the verb. Her tone remains flat, which means little change in pitch (± 0.07), throughout the clause (a slight rise in the end is not that for a sentence stress but rather the result of the intonation for sentence continuation) (Figure 2 and Table 2). The lack of sentence stress makes it harder to tell which word is more important in her speech.

The pitch contour of another Japanese student (JS8) in Figure 3 is featured by a sudden surge in pitch in the subject pronoun (an increase by 0.98 in ratio) (Table 2). Her pitch slightly rises within the verb (Figure 3), but the frequency does not exceed that in the pronoun (a decrease by 0.10 in ratio between the vowels of the two words) (Table 2). Thus, it can hardly be perceived as a sentence stress.

4.1.2 The Pitch Patterns in a Sentence-Final Clause with a Verb (Target 2)

The second target clause, "than I thought", has the same construction as the first one, that is, "a conjunction + a subject pronoun + a predicate verb". The only difference is that it appears in the sentence-final position.

In this clause, the native speakers raised their pitch in the verb "thought" by 0.24 on average (Table 3). In contrast the Japanese students lowered their pitch by 0.13 on average in the same verb (Table 4). Most of them failed to realize the sentence stress on the verb. The only difference from the pitch patterns in Target 1 was seen in the pronoun "I". Most of them did not raise their pitch in the pronoun (a decrease by 0.03 on average) after the conjunction "than" in Target 2 (Table 4).

The pitch contour of a native speaker (NS3) (Figure 4) shows a clear rise in her pitch in the vowel of the verb (an increase by 0.25) (Table 3), which marks a sentence stress on the verb. However, there is no such protrusion in the Japanese students' pitch patterns shown in Figures 5 and 6. With regard to the Japanese student No.7 (Figure 5) the peak is in the conjunction "than", and the pitch goes down in the pronoun and keeps falling in the verb (-0.14 in the pronoun and -0.54 in the verb) (Table 4). In the case of another Japanese student (JS11) (Figure 6) her pitch goes flat throughout the clause, and there is no obvious rise in any of the words (a change between -0.03 and -0.04) (Table 4). Both students fail to realize the sentence stress on the verb.

Only one out of the twelve students (JS5) realized a sentence stress by raising her pitch by 0.14 in the verb, whose pattern is close to that of NS6 (a rise by 0.15) (Tables 3 and 4). A pitch rise in the verb is also observed in two other students (JS4 and JS10), but the ratio of their pitch change (+0.05 and +0.08) is not as great as that of most of the native speakers (Tables 3 and 4).

4.2 The Pitch Patterns in the Clauses with the Structure of "a subject pronoun + an auxiliary + a be-verb + a predicate adjective"

4.2.1 The Pitch Patterns in a Sentence-initial Clause with a Predicate Adjective (Target 3)

The third target clause is "I have been very busy". The predicate is "be + an intensifier + an adjective", and it does not appear right after the subject pronoun (in Targets 1 and 2 the predicate verbs were immediately after the subject pronouns). A sentence stress can be placed on the adjective "busy" or its intensifier "very" (the copula "be", unlike the other verbs, is not stressed unless there is a semantic emphasis on it).

The native speakers, except for one, raised their pitch by 0.19 on average in "very", the intensifier for the following adjective (Table 5). The general tendency of the Japanese students was to increase the pitch in "very" by 0.04 on average from the preceding word (Table 6). Their degree of pitch rise is not as large as that of the native speakers.

In addition, in terms of the difference in pitch ratio between the pronoun "I" and "very" (Tables 5 and 6), the Japanese students showed a pattern opposite to those of the native speakers. Their pitch in "very" was lower than that of "I" by 0.14 on average, whereas the native speakers' was higher by 0.15 on average (Tables 5 and 6).

The pitch contour of NS1 (Figure 7) clearly shows a sharp rise in "very" from the preceding word (i.e. an increase by 0.53 in ratio), which marks the first sentence stress in the clause (Table 5). The pitch of JS10 rises very little, only by 0.06, in "very" (Figure 8 and Table 6), and that of JS8 falls by 0.12 in it (Figure 9 and Table 6). As a result, both students fail to realize a sentence stress on the content word. A crucial contrast between NS1 and the two Japanese students JS10 and JS8 lies in the pitch difference between "I" and "very". The pitch of NS1 is much higher in "very" than in "I" (an increase by 0.32) (Table 5), whereas that of JS10 and JS8 is lower in "very" (a decrease by 0.27 and by 0.18 respectively) (Table 6). In other words, the Japanese students tend to use higher pitch in the sentence-initial subject pronoun than in the content word in the predicate. This pattern also contributes to failure to realize a sentence stress in the latter.

Only two out of the twelve students (JS3 and JS5) raised their pitch in "very" to the degree (+0.14 and +0.21 respectively) closer to that of the native speakers' average (+0.19) (Tables 5 and 6). However, their pitch level in "very" is almost the same as that in the subject pronoun "I" (+0.02 and +0.03 respectively) while the native speakers' pitch is higher in "very" (by 0.15 on average) (Tables 5 and 6).

4.2.2 The Pitch Patterns in a Sentence-final Clause with a Predicate Adjective (Target 4)

The fourth target clause is "I will be happy". It appears in the latter half of a complex sentence. The native speakers significantly raised their pitch by 0.20 in ratio on average in the predicate adjective "happy" (Table 7), but they did not change it very much (from 0.00

to 0.01 on average) in the preceding function word sequence (Table 7). This pitch pattern clearly marks the sentence stress on the predicate adjective. The Japanese students raised their pitch in "happy" by 0.09 on average, but most of them did not raise it as acutely as the native speakers did (Table 8).

The pitch of all the native speakers was higher in the predicate adjective "happy" than in the subject pronoun "I" by 0.18 in ratio on average (Table 7). However, most of the Japanese students kept the same pitch level in "happy" as in "I" (+0.00 on overall average) (Table 8). This makes their pitch rise in "happy" from the preceding word even less prominent than that of the native speakers. As a result, it is less likely to be perceived as a sentence stress on the adjective.

The protrusion of the pitch in "happy" is obvious in the pitch contour of NS1 (an increase from the pitch in "I" by 0.35 in ratio) (Figure 10 and Table 7). In contrast those of JS4 and JS1 are flatter and do not show any significant rise in their pitch (Figures 11 and 12). In their speech, the pitch in "happy" either becomes lower than that in "I" (a decrease by 0.14 for JS4) or remains almost the same (a change by -0.03 for JS 1) (Figures 11 and 12 and Table 8). These examples indicate the Japanese students' tendency not to raise the pitch high enough for clear marking of a sentence stress in the predicate adjective.

5. Conclusion

5.1 Findings

In this study it was found that the Japanese students tend not to raise their pitch in predicate verbs at all or not to raise it high enough to make an obvious prominence in predicate adjectives or intensifiers as native speakers do. In most cases the Japanese students' pitch in subject pronouns is the same as or higher than that in predicate verbs, adjectives, or intensifiers. Their pitch tends to go up more positively in the subject pronoun immediately before the predicate verb in a sentence-initial clause. All these features of the Japanese students' typical pitch patterns contribute to the lack of perceivable sentence stresses on the predicate verbs, adjectives or intensifiers in their speech.

5.2 Suggestions for the Following Research

In this study the main purpose was to observe some characteristics of Japanese students' pitch patterns in relation to sentence stresses in comparison with those of native speakers. Due to the great amount of time needed for the measurement of the frequencies in words, the number of sample sentences was limited. In the next study the data should be taken from more samples and be statistically analyzed to see whether the tendencies found in this study will be supported more positively.

It is also important to select texts without multiple interpretations on emphasis. Two

native speakers used a higher pitch in the subject pronoun than in "very" in Target 3. One of them commented that "I" had been naturally emphasized in contrast with other things that could keep the person busy. Such a context where a semantic emphasis could be placed on the subject pronoun should be avoided.

Based on the findings of this study and the following research I will create exercises for students to acquire basic pitch patterns for English sentence stresses by comparing their pitch contours with those of native speakers with the help of phonetic analysis software. In such exercises a special focus will be placed on practicing an acute pitch rise in verbs and other content words in the predicates for sentence stresses. In addition students will learn not to raise their pitch in unstressed subject pronouns by utilizing visual feedback of their pronunciation. It may also help to incorporate text analyses to recognize pronouns as old information. The effectiveness of practice assisted by acoustic analysis software should be investigated in relation to the acquisition of English sentence stresses in further research.

Acknowledgements

I would like to express my profound gratitude to all the participants in my experiment for their voluntary cooperation. My special thanks go to Hatsuyo Morinaga for her advice on the techniques for creating the tables and figures and to Miyu Hirayama for her hard work in making them. I appreciate the advice given by Akito Nagamasa on the data processing.

References

- Bolinger, Dwight L. (1958). "A Theory of Pitch Accent in English". Word 14 cited in Miyoko Sugito (2012) Nihongo no Akusento, Eigo no Akusento: Doko ga Do Chigaunoka. (Accents in Japanese and in English: Their Differences). Tokyo: Hitsuji-shobo.
- Gilbert, Judy B. (1993). Clear Speech Student's Book: Basic Pronunciation and Listening Comprehension in North American English. Cambridge: Cambridge University Press.
- Le, Hang Thu & Brook, Jennifer. (2011). "Using Praat to Teach Intonation to ESL students". Hawaii Pacific University TESOL Working Paper Series 9(1), 2: 2-15
- Liberman, Philip. (1967). *Intonation, Perception, and Language*. Massachusetts Cambridge: MIT Press cited in Miyoko Sugito (2012) *Nihongo no Akusento, Eigo no Akusento: Doko ga Do Chigaunoka*. (Accents in Japanese and in English: Their Differences). Tokyo: Hitsujishobo.

- Maeda, Hirofumi & Imanaka, Masahiro. (1999). "Classifying English Intonation of Some Japanese Learners". *Bulletin of Tokyo Seitoku University* 6, 45-61. http://www.tsu.ac.jp/Portals/0/research/11/P045-061.pdf
- Ministry of Education, Culture, Sports, Science and Technology. (2011). "Section 9 Foreign Languages", Chugakkou Gakushu-shido Yoryo Eiyakuban (Kayaku) (The English Version of the Course of Study for Lower Secondary Schools <tentative translation>). http://www.mext.go.jp/component/a_menu/education/micro_detail/__icsFiles/afieldfile/2011/04/11/1298356_10.pdf
- Ministry of Education, Culture, Sports, Science and Technology. (2015). Dai-9-setsu Gaikokugo, Chugakkou Gakushu-shido Yoryo: Heisei-27-nenndo 3-gatsu Ichibu-kaisei (Section 9 Foreign Languages, the Course of Study for Lower Secondary Schools partly revised in March 2015).

 http://www.mext.go.jp/a_menu/shotou/new-cs/youryou/__icsFiles/afieldfile/2015/03/26/1356251_1.pdf
- Mori, Yoko. (2005). "The Initial High Pitch in English Sentences Produced by Japanese Speakers". *English Linguistics* 22(1) 23-55. https://www.jstage.jst.go.jp/article/elsj1984/22/1/22_1_23/_pdf
- Niisato, Masao et al. (2016). SUNSHINE ENGLISH COURSE 3. Tokyo: Kairyudo.
- Sugito, Miyoko. (1983). "Nihonjin no Eigo Intoneishon to Rizumu no Tokucho (English Spoken by Japanese Characteristics of Their Intonation and Rhythm)". In Miyoko Sugito (1996) *Nihongo Onsei no Kenkyu 2: Nihonjin no Eigo* (Studies of Japanese Phonetics 2: English Spoken by Japanese) pp.185-194. Osaka: Izumishoin.
- Sugito (2012). Nihongo no Akusento, Eigo no Akusento: Doko ga Do Chigaunoka. (Accents in Japanese and in English: Their Differences). Tokyo: Hitsuji-shobo.
- Wilson, Ian. (2008). "Using Praat and Moodle for Teaching Segmental and Suprasegmental Pronunciation". *Proceedings of the 3rd International WorldCALL Conference: Using Technologies for Language Learning (WorldCALL 2008)* pp.112-115.
 - http://web-ext.u-aizu.ac.jp/~wilson/Wilson2008WorldCALLProc LowRez.pdf

Table 1: Native Speakers' Pitch Difference Between the Words in "If I knew"

Speaker	Sex	Target 1	If	I	knew	Mean	Highest	Lowest
		Time (sec)	5,800	5,994	6,193		6.19	7.38
NS1	F	Frequency (Hz)	183	162	244	155	244	65
NSI		Ratio to Mean	1.18	1.05	1.57			
		Difference		-0.14	+0.53			
		Time (sec)	8,434	8,623	8,934		9,903	10,223
NS2	M	Frequency (Hz)	145	124	193	149	210	88
NS2	IVI	Ratio to Mean	0.97	0.83	1.30			
		Difference		-0.14	+0.46			
	F	Time (sec)	7,993	8,144	8,373		8.37	9.6
NS3		Frequency (Hz)	207	210	288	206	288	123
1133		Ratio to Mean	1.00	1.02	1.40			
		Difference		+0.01	+0.38			
	F	Time (sec)	10,022	10,183	10,411		10.4	11.3
NS4		Frequency (Hz)	192	193	246	205	246	164
1134		Ratio to Mean	0.94	0.94	1.20			
		Difference		+0.00	+0.26			
		Time (sec)	9,033	9,203	9,394		9,024	10,404
NS5	M	Frequency (Hz)	107	98	121	101	129	73
1133	IVI	Ratio to Mean	1.06	0.97	1.20			
		Difference		-0.09	+0.23			
		Time (sec)	7,133	7,303	7,453		7,113	8,504
NS6	M	Frequency (Hz)	131	125	154	140	188	91
1/20	1VI	Ratio to Mean	0.94	0.89	1.10			
		Difference		-0.04	+0.21			
		NS Average (Difference)		-0.06	+0.34			

Table 2: Japanese Students' Pitch Difference Between the Words in "If I knew"

Speaker	Sex	Target 1	If	I	knew	Mean	Highest	Lowest
		Time (sec)	8,685	8,972	9,206		9.59	10.42
JS1	F	Frequency (Hz)	233	247	202	208	250	166
JO1	1	Ratio to Mean	1.12	1.19	0.97			
		Difference		+0.07	-0.22			
		Time (sec)	7,994	8,244	8,632	9	8.08	10.24
100	F	Frequency (Hz)	289	262	249	254	324	183
JS2	1.	Ratio to Mean	1.14	1.03	0.98			
		Difference		-0.11	-0.05			
		Time (sec)	6,313	6,634	6,882		7.01	8.22
100	F	Frequency (Hz)	210	251	200	201	308	94
JS3	Г	Ratio to Mean	1.04	1.25	1.00			
		Difference		+0.20	-0.25			
		Time (sec)	7,464	7,724	8,016		8.77	9.85
TCA		Frequency (Hz)	242	240	241	226	266	185
JS4	F	Ratio to Mean	1.07	1.06	1.07			
		Difference		-0.01	+0.00			
		Time (sec)	11,134	11,534	11,832		11.99	11.7
105		Frequency (Hz)	254	284	209	245	288	202
JS5	F	Ratio to Mean	1.04	1.16	0.85			
		Difference		+0.12	-0.31			
		Time (sec)	7,255	7,523	7,824		8.86	9.38
JS6	_	Frequency (Hz)	236	231	213	240	283	196
	F	Ratio to Mean	0.98	0.96	0.89	-		
		Difference		-0.02	-0.08			
		Time (sec)	7,984	8,400	8,723		9.69	10.
		Frequency (Hz)	240	242	218	175	256	94
JS7	F	Ratio to Mean	1.37	1.38	1.25			
		Difference		+0.01	-0.14			
		Time (sec)	10,005	10,222	10,507	11	10.22	11.92
	F	Frequency (Hz)	122	311	292	193	311	74
JS8		Ratio to Mean	0.63	1.61	1.51	100	011	•
		Difference	0.00	+0.98	-0.10			
		Time (sec)	7,602	7,961	8,222		8.9	9.57
		Frequency (Hz)	242	251	209	222	254	189
JS9	F	Ratio to Mean	1.09	1.13	0.94	222	201	10.
		Difference	1.03	+0.04	-0.19			
		Time (sec)	7,722	8,094	8,324		7.39	7.86
		Frequency (Hz)	251	277	200	217	263	171
JS10	F	Ratio to Mean	1.16	1.28	0.92	211	200	17.
		Difference	1.10	+0.12	-0.35			
		Time (sec)	8,214	8,467	8,800		8.97	10.34
		Frequency (Hz)	201	215	200	214	266	16.3
JS11	F	Ratio to Mean	0.94	1.00	0.93	214	200	102
		Difference	0.34	+0.07	-0.07			
		Time (sec)	5,934	6,252	6,532		5.9	7.63
		Frequency (Hz)	238	226	208	228	272	184
JS12	F	Ratio to Mean	1.04	0.99	0.91	440	414	10
		Difference	1.04					
		-		-0.05	-0.08			
		JS Average		+0.13	-0.16			
		(Difference)						

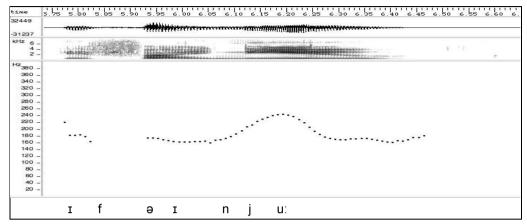


Figure 1: Native Speaker's (NS1) Pitch Contour of "If I knew"

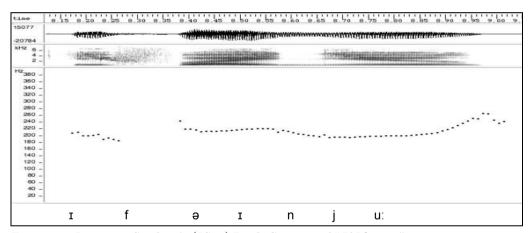


Figure 2: Japanese Student's (JS11) Pitch Contour of "If I knew"

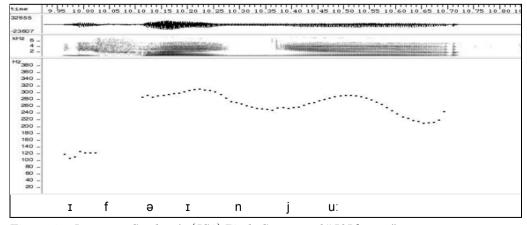


Figure 3: Japanese Student's (JS8) Pitch Contour of "If I knew"

Table 3: Native Speakers' Pitch Difference Between the Words in "than I thought"

Speaker	Sex	Target 2	than	I	thought	Mean	Highest	Lowest
		Time (sec)	10,550	10,714	10,943		10,193	11,064
NS1	F	Frequency (Hz)	155	137	187	183	253	112
1/01	Г	Ratio to Mean	0.85	0.75	1.02			
		Difference		-0.10	+0.27			
		Time (sec)	10,854	10,997	11,254		11,232	10,763
NS2	M	Frequency (Hz)	119	127	194	162	239	85
11.52	IVI	Ratio to Mean	0.73	0.78	1.20			
		Difference		+0.05	+0.41			
		Time (sec)	9,856	9,945	10,217		10,174	9,112
NS3	F	Frequency (Hz)	179	167	209	167	256	78
11/29		Ratio to Mean	1.07	1.00	1.25			
		Difference		-0.07	+0.25			
	F	Time (sec)	9,823	9,972	10,174		9,024	10,264
NS4		Frequency (Hz)	177	172	186	157	233	81
N54		Ratio to Mean	1.13	1.10	1.18			
		Difference		-0.03	+0.09			
		Time (sec)	10,675	10,845	11,064		10,403	10,613
NS5	M	Frequency (Hz)	103	90	125	125	163	87
11/29	IVI	Ratio to Mean	0.82	0.72	1.00			
		Difference		-0.10	+0.28			
		Time (sec)	10,328	16,487	10,658		10,084	10,503
NS6	М	Frequency (Hz)	111	102	125	150	202	97
1050	M	Ratio to Mean	0.74	0.68	0.83			
		Difference		-0.06	+0.15			
		NS Average		-0.05	+0.24			
		(Difference)		-0.05	+0.24			

Table 4: Japanese Students' Pitch Difference Between the Words in "than I thought"

Speaker	Sex	Target 2	than	I	thought	Mean	Highest	Lowest
		Time (sec)	12,013	12,313	12,535		11,014	12,683
JS1	F	Frequency (Hz)	203	219	202	237	306	16'
301	1	Ratio to Mean	0.86	0.92	0.85			
		Difference		+0.07	-0.07			
		Time (sec)	19,754	20,080	20,324		18,750	20,45
JS2	F	Frequency (Hz)	213	220	219	244	320	16
302	1	Ratio to Mean	0.87	0.90	0.90			
		Difference		+0.03	-0.00			
		Time (sec)	9,873	10,105	10,413		9,633	10,38
JS3	F	Frequency (Hz)	191	183	103	164	242	8
300	1	Ratio to Mean	1.16	1.12	0.63			
		Difference		-0.05	-0.49			
		Time (sec)	11,853	12,056	12,354		10,799	11,15
JS4	F	Frequency (Hz)	231	233	243	212	298	12
JOT	1	Ratio to Mean	1.09	1.10	1.15			
		Difference		+0.01	+0.05			
		Time (sec)	15,689	16,304	16,313		14,665	16,45
JS5	F	Frequency (Hz)	211	222	249	195	308	8
133		Ratio to Mean	1.08	1.14	1.28			
		Difference		+0.06	+0.14			
		Time (sec)	11,074	11,314	11,546		11,184	11,59
JS6	F	Frequency (Hz)	206	216	120	229	353	10
	F	Ratio to Mean	0.90	0.94	0.52			
		Difference		+0.04	-0.42			
		Time (sec)	12,821	13,255	13,504		11,081	13,62
107	F	Frequency (Hz)	254	226	115	205	313	9
JS7	Г	Ratio to Mean	1.24	1.10	0.56			
		Difference		-0.14	-0.54			
	F	Time (sec)	12,756	12,947	13,221		11,863	13,34
100		Frequency (Hz)	233	202	201	232	366	9
JS8		Ratio to Mean	1.00	0.87	0.87			
		Difference		-0.13	-0.00			
		Time (sec)	12,522	12,875	13,793		11,472	12,68
TCO	F	Frequency (Hz)	236	216	123	188	288	8
JS9	Г	Ratio to Mean	1.26	1.15	0.65			
		Difference		-0.11	-0.49			
		Time (sec)	12,832	13,113	13,337		11,970	13,04
1010	177	Frequency (Hz)	201	195	211	195	294	9
JS10	F	Ratio to Mean	1.03	1.00	1.08			
		Difference		-0.03	+0.08			
		Time (sec)	13,008	13,224	13,603		12,077	13,66
1011	-	Frequency (Hz)	189	185	178	159	229	8
JS11	F	Ratio to Mean	1.19	1.16	1.12			
		Difference		-0.03	-0.04			
		Time (sec)	10,585	10,804	11,054		9,564	11,16
1010		Frequency (Hz)	208	210	209	166	267	6
JS12	F	Ratio to Mean	1.25	1.27	1.26	-		
		Difference		+0.01	-0.01			
		JS Average						
		(Difference)		-0.03	-0.13			

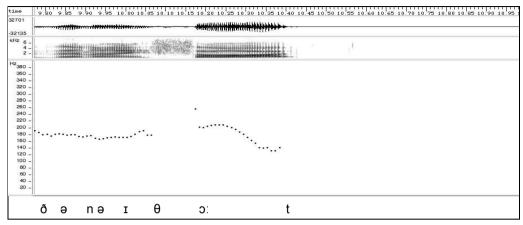


Figure 4: Native Speaker's (NS3) Pitch Contour of "than I thought"

Figure 5: Japanese Student's (JS7) Pitch Contour of "than I thought"

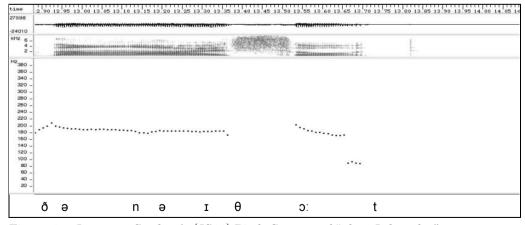


Figure 6: Japanese Student's (JS11) Pitch Contour of "than I thought"

Table 5: Native Speakers' Pitch Difference Between the Words in "I have been very busy"

Speaker	Sex	Target 3	I	have	been	very	busy	very-I	Mean	Highest	Lowest
		Time (sec)	4,421	4,447	4,723	5,083	5,293			5,083	4,281
NS1	F	Frequency (Hz)	259	259	214	329	220		218	329	106
NSI	Г	Ratio to Mean	1.19	1.19	0.98	1.51	1.01				
		Difference		+0.00	-0.21	+0.53	-0.50	+0.32			
		Time (sec)	4,613	4,644	4,760	5,053	5,214			5,053	6,144
NS2	M	Frequency (Hz)	159	140	183	229	175		166	229	103
1132	IVI	Ratio to Mean	0.96	0.84	1.10	1.38	1.05				
		Difference		-0.11	+0.26	+0.28	-0.33	+0.42			
		Time (sec)	3,734	3,834	3,995	4,315	4,580			4,315	5,714
NS3	F	Frequency (Hz)	217	241	243	286	231		176	286	66
1133		Ratio to Mean	1.23	1.37	1.38	1.63	1.31				
		Difference		+0.14	+0.01	+0.24	-0.31	+0.39			
	F	Time (sec)	4,014	4,043	4,136	4,324	4,610			4,014	5,771
NS4		Frequency (Hz)	299	275	274	246	229		191	299	82
1134		Ratio to Mean	1.57	1.44	1.43	1.29	1.20				
		Difference		-0.13	-0.01	-0.15	-0.09	-0.28			
		Time (sec)	4,554	4,703	5,083	5,484	5,654			4,554	5,874
NS5	М	Frequency (Hz)	157	142	127	144	125		122	157	87
1133	101	Ratio to Mean	1.29	1.16	1.04	1.18	1.02				
		Difference		-0.12	-0.12	+0.14	-0.16	-0.11			
		Time (sec)	4,383	4,445	4,535	4,816	5,025			4,954	5,964
NS6	M	Frequency (Hz)	136	116	144	159	153		145	207	82
1130	1V1	Ratio to Mean	0.94	0.80	0.99	1.10	1.06				
		Difference		-0.14	+0.19	+0.10	-0.04	+0.16			
		NS Average		-0.06	+0.02	+0.19	-0.24	+0.15			
		(Difference)		0.00	10.02	10.19	0.24	10.13			

Table 6: Japanese Students' Pitch Difference Between the Words in "I have been very busy"

Speaker	Sev	Target 3	I	have	been	very	busy	very-I	Mean	Highest	Lowest
Ореакст	OCA	Time (sec)	4,535	4,665	4,933	5,453	5,677	VCI y I	wican	5,853	5,193
		Frequency (Hz)	277	241	231	234	240		202	294	109
JS1	F	Ratio to Mean	1.37	1.19	1.14	1.16	1.19		202	234	103
		Difference	1.07	-0.18	-0.05	+0.01	+0.03	-0.21			
		Time (sec)	10,411	10,554	11,462	11,876	12,121	0.21		13,701	14,562
		Frequency (Hz)	325	286	268	266	257		263	327	198
JS2	F	Ratio to Mean	1.24	1.09	1.02	1.01	0.98		200	021	130
		Difference	1,21	-0.15	-0.07	-0.01	-0.03	-0.22			
		Time (sec)	3,301	3,408	3,675	4,104	4,286	0.22		3,346	4,583
		Frequency (Hz)	221	230	201	225	202		174	253	94
JS3	F	Ratio to Mean	1.27	1.32	1.16	1.29	1.16		1/1	200	J-1
		Difference	1.21	+0.05	-0.17	+0.14	-0.13	+0.02			
		Time (sec)	3,834	3,947	4,355	4,664	4,844	10.02		3,834	4,422
		Frequency (Hz)	296	280	254	249	252		251	296	206
JS4	F	Ratio to Mean	1.18	1.12	1.01	0.99	1.00		201	230	200
		Difference	1.10	-0.06	-0.10	-0.02	+0.01	-0.19			
		Time (sec)	6.683	6,923	7,293	7,919	8,162	0.13		10.305	10,076
		Frequency (Hz)	267	277	223	275	241		252	313	191
JS5	F	Ratio to Mean	1.06	1.10	0.88	1.09	0.96		202	313	131
		Difference	1.00	+0.04	-0.21	+0.21	-0.13	+0.03			
		Time (sec)	3,316	3,464	3,724	4,592	4,724	10.00		3,195	4,095
		Frequency (Hz)	251	272	243	263	249		225	337	112
JS6	F	Ratio to Mean	1.12	1.21	1.08	1.17	1.11		220	331	112
		Difference	1,12	+0.09	-0.13	+0.09	-0.06	+0.05			
		Time (sec)	3,474	3.604	3,984	4,501	4,834	10.00		4,242	5,075
		Frequency (Hz)	275	259	233	242	242		206	301	111
JS7	F	Ratio to Mean	1.33	1.26	1.13	1.17	1.17		200	301	111
		Difference	1.00	-0.08	-0.13	+0.04	+0.00	-0.16			
		Time (sec)	4,854	4,974	5,224	5,534	6,148	0.10		4,974	7,823
		Frequency (Hz)	276	312	262	232	225		246	312	179
JS8	F	Ratio to Mean	1.12	1.27	1.07	0.94	0.91		210	012	110
		Difference	1.12	+0.15	-0.20	-0.12	-0.03	-0.18			
		Time (sec)	3,804	3,947	4,226	4,813	5,016	0.10		5,854	7,125
		Frequency (Hz)	257	250	224	239	232		223	272	173
JS9	F	Ratio to Mean	1.15	1.12	1.00	1.07	1.04				1.0
		Difference		-0.03	-0.12	+0.07	-0.03	-0.08			
		Time (sec)	3,962	4,102	4,511	4,864	5,104	0.00		3,992	4,294
		Frequency (Hz)	294	255	227	239	243		203	295	110
JS10	F	Ratio to Mean	1.45	1.26	1.12	1.18	1.20				
		Difference		-0.19	-0.14	+0.06	+0.02	-0.27			
		Time (sec)	4,725	4,843	5,115	5,486	5,800			4,725	8,273
		Frequency (Hz)	259	241	205	215	200		214	259	168
JS11	F	Ratio to Mean	1.21	1.13	0.96	1.00	0.93				
		Difference		-0.08	-0.17	+0.05	-0.07	-0.21			
		Time (sec)	3,683	3,850	4,074	4,514	4,694			5,153	6,354
	_	Frequency (Hz)	227	226	218	212	210		190	287	92
JS12	F	Ratio to Mean	+1.19	+1.19	+1.15	+1.12	+1.11				
		Difference	0	-0.01	-0.04	-0.03	-0.01	-0.08			
		JS Average									
		(Difference)		-0.05	-0.13	+0.04	-0.03	-0.14			
	_	/									

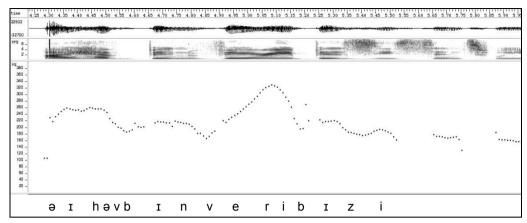


Figure 7: Native Speaker's (NS1) Pitch Contour of "I have been very busy"

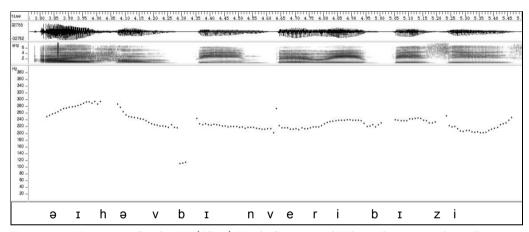


Figure 8: Japanese Student's (JS10) Pitch Contour of "I have been very busy "

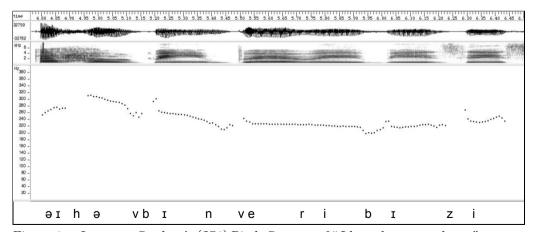


Figure 9: Japanese Student's (JS8) Pitch Contour of "I have been very busy"

Table 7: Native Speakers' Pitch Difference Between the Words in "I will be happy"

Speaker	Sex	Target 4	I	will	be	happy	happy-I	Mean	Highest	Lowest
		Time (sec)	35,584	35,622	35,753	35,964			33,452	37,032
NS1	F	Frequency (Hz)	181	182	204	244		181	293	69
NSI	1.	Ratio to Mean	1.00	1.01	1.13	1.35				
		Difference		+0.01	+0.12	+0.22	+0.35			
		Time (sec)	34,064	34,112	34,222	34,464			32,664	32,481
NS2	M	Frequency (Hz)	145	136	129	164		170	274	65
N 52	IVI	Ratio to Mean	0.85	0.80	0.76	0.96				
		Difference		-0.05	-0.04	+0.21	+0.11			
		Time (sec)	30,274	30,383	30,533	30,915			28,594	31,958
NS3	F	Frequency (Hz)	187	197	187	212		178	287	68
NS3	1.	Ratio to Mean	1.05	1.11	1.05	1.19				
		Difference		+0.06	-0.06	+0.14	+0.14			
	F	Time (sec)	31,314	31,413	31,524	31,674			30,312	30,820
NS4		Frequency (Hz)	240	244	238	263		189	313	64
N54		Ratio to Mean	1.27	1.29	1.26	1.39				
		Difference		+0.02	-0.03	+0.13	+0.12			
		Time (sec)	30,514	30,690	30,824	32,123			29,948	32,095
NS5	M	Frequency (Hz)	105	105	101	117		115	152	77
INS9	IVI	Ratio to Mean	0.91	0.91	0.88	1.02				
		Difference		+0.00	-0.03	+0.14	+0.10			
		Time (sec)	32,825	32,893	32,972	33,103			31,813	34,029
NICG	M	Frequency (Hz)	127	120	117	162		130	170	90
NS6	M	Ratio to Mean	0.98	0.92	0.90	1.25				
		Difference		-0.05	-0.02	+0.35	+0.11 -0.11 -0.14 -0.14 -0.14 -0.12 -0.12 -0.10 -0			
		NS Average (Difference)		+0.00	-0.01	+0.20	+0.18			

Table 8: Japanese Students' Pitch Difference Between the Words in "I will be happy"

Speaker	Sex	Target 4	I	will	be	happy	happy-I	Mean	Highest	Lowest
Opeaner	JCA	Time (sec)	37,465	37,581	37,823	38,022	парру-1	wican	37,166	39,009
		Frequency (Hz)	229	221	205	222		211	332	89
JS1	F	Ratio to Mean	1.09	1.05	0.97	1.05		211	332	0.0
		Difference	1.03	-0.04	-0.08	+0.08	-0.03			
		Time (sec)	45,024	45,123	45,476	46,104	0.03		46.022	46.921
		Frequency (Hz)	297	305	235	284		258	356	159
JS2	F	Ratio to Mean	1.15	1.18	0.91	1.10		200	330	103
		Difference	1.10	+0.03	-0.27	+0.19	-0.05			
		Time (sec)	29,345	29,494	29,686	30,062	0.03		27,671	29,276
		Frequency (Hz)	199	193	182	219		191	276	106
JS3	F	Ratio to Mean	1.04	1.01	0.95	1.15		191	210	100
		Difference	1.04	-0.03	-0.06	+0.19	+0.10			
			20 201				+0.10		26 096	20 122
		Time (sec)	38,291	38,434	38,719	38,954		100	36,086	38,133
JS4	F	Frequency (Hz)	272	254	237	244		198	309	87
		Ratio to Mean	1.37	1.28	1.20	1.23	0.14			
		Difference	40, 400	-0.09	-0.09	+0.04	-0.14		41 010	44 550
		Time (sec)	43,433	43,594	43,864	44,484		200	41,816	44,773
JS5	F	Frequency (Hz)	238	229	213	300		209	315	102
		Ratio to Mean	1.14	1.10	1.02	1.44	0.00			
		Difference		-0.04	-0.08	+0.42	+0.30			
		Time (sec)	33,394	33,473	33,774	34,204			34,923	34,067
JS6	F	Frequency (Hz)	245	250	220	241		230	351	109
300	_	Ratio to Mean	1.07	1.09	0.96	1.05				
		Difference		+0.02	-0.13	+0.09	-0.02			
		Time (sec)	46,885	46,984	47,393	47,585			49,231	49,555
JS7	F	Frequency (Hz)	248	252	237	240		205	322	87
,50,	1	Ratio to Mean	1.21	1.23	1.16	1.17				
		Difference		+0.02	-0.07	+0.01	-0.04			
		Time (sec)	37,564	37,595	37,793	38,324			37,296	39,406
JS8	F	Frequency (Hz)	257	263	233	245		212	340	84
100	1	Ratio to Mean	1.21	1.24	1.10	1.16				
		Difference		+0.03	-0.14	+0.06	-0.06			
		Time (sec)	37,454	37,654	37,922	38,124			39,554	38,519
JS9	F	Frequency (Hz)	211	232	236	224		200	299	100
300	1	Ratio to Mean	1.06	1.16	1.18	1.12				
		Difference		+0.11	+0.02	-0.06	+0.07			
		Time (sec)	39,570	39,544	39,783	40,184			37,597	38,910
JS10	E	Frequency (Hz)	254	256	223	235		186	280	92
J310	1.	Ratio to Mean	1.37	1.38	1.20	1.26				
		Difference		+0.01	-0.18	+0.06	-0.10			
		Time (sec)	41,974	42,064	42,322	42,662			42,831	39,553
1011		Frequency (Hz)	216	223	194	213		197	266	128
JS11	Г	Ratio to Mean	1.10	1.13	0.98	1.08				
		Difference		+0.04	-0.15	+0.10	-0.02			
		Time (sec)	35,684	35,793	36,084	36,201			36,350	37,412
1010		Frequency (Hz)	222	220	224	213		187	280	93
JS12	F	Ratio to Mean	1.19	1.18	1.20	1.14				
		Difference		-0.01	+0.02	-0.06	-0.05			
		JS Average								
		(Difference)		+0.00	-0.10	+0.09	+0.00			

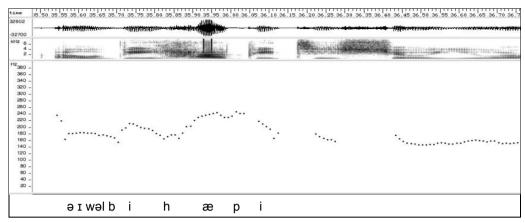


Figure 10: Native Speaker's (NS1) Pitch Contour of "I will be happy"

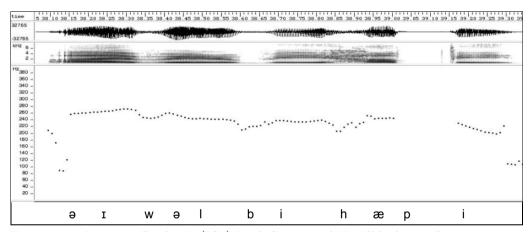


Figure 11: Japanese Student's (JS4) Pitch Contour of "I will be happy"



Figure 12: Japanese Student's (JS1) Pitch Contour of "I will be happy"